← Back to Teaching

Born-Oppenheimer and Car-Parrinello Dynamics

📘 Deriving Classical Molecular Dynamics

The starting point is the time-dependent Schrödinger equation:

\[ i\hbar \frac{\partial}{\partial t} \Phi(\{ \mathbf{r}_i \}, \{ \mathbf{R}_I \}; t) = \mathcal{H}(\{ \mathbf{r}_i \}, \{ \mathbf{R}_I \}; t) \Phi(\{ \mathbf{r}_i \}, \{ \mathbf{R}_I \}; t) \tag{2.1} \]

With the Hamiltonian:

\[ \begin{aligned} \mathcal{H} &= - \sum_I \frac{\hbar^2}{2 M_I} \nabla^2_I - \sum_i \frac{\hbar^2}{2 m_e} \nabla^2_i \\ &\quad + \frac{1}{4 \pi \varepsilon_0} \left( \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{I, i} \frac{e^2 Z_I}{|\mathbf{R}_I - \mathbf{r}_i|} + \sum_{I < J} \frac{e^2 Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} \right) \end{aligned} \]

This can be rewritten as:

\[ \mathcal{H} = - \sum_I \frac{\hbar^2}{2 M_I} \nabla^2_I - \sum_i \frac{\hbar^2}{2 m_e} \nabla^2_i + V_{n-e}(\{ \mathbf{r}_i \}, \{ \mathbf{R}_I \}) \]

Or split into nuclear and electronic parts:

\[ \mathcal{H} = - \sum_I \frac{\hbar^2}{2 M_I} \nabla^2_I + \mathcal{H}_e(\{ \mathbf{r}_i \}, \{ \mathbf{R}_I \}) \tag{2.2} \]


🔹 Born-Oppenheimer Molecular Dynamics (BOMD)

BOMD is based on the Born-Oppenheimer approximation. This separates the motion of electrons and nuclei, assuming electrons respond instantaneously to nuclear motion.

🔹 Car-Parrinello Molecular Dynamics (CPMD)

CPMD evolves both nuclear and electronic degrees of freedom together in time using fictitious mass for the electrons. This allows time integration of both on the same footing without solving SCF in each step.